We extract the surface potential from photoemission spectra

We need ionization energy to associate the surface potential to the electronic properties of semiconductors

Threshold photoemission & ionization energy

Surface potential & ionization energy match well in metallic materials

Example of a metallic sample

10 μm

4000

3000

2000

1000

-1.0

-0.8

-0.6

Relative work function (eV)

Number of pixels

- Multi-layer graphene on a SiC substrate displays varying work function depending on the layer thickness
- The distribution width is ~50meV consistent to kT for RT

5000 -

4000 -

3000 -

2000 -

1000

4.0

The surface potential & ionization energy vary in the vicinity of v-defects

Defects' locations are identified unequivocally in LEEM image

Small v-defects & trench defects have ~40meV
lower surface potential than the pristine area

- 0.0

- -0.1

eV

Large v-defects are ~150meV lower

Our surface potential & ionization energy measurements implies the energy barrier for holes at v-defect site

First, define the spatial variation of the surface potential (E_F is unknown)

Determine the energy of the VBM w/ respect to the surface potential

 Significant barrier heights (possibly > 0.3 eV) for holes can be expected at the vicinity of v-defects & trench defects

Define the energy of CBM based on VBM for the pristine area

Estimate the electronic states for InGaN MQW

Our experiment suggests defect screening in MQW without compositional variation at sub-micron length-scale

Potential

"Defect Screening

carriers in QWs

Lateral Position

Perspectives of LEEM-PEEM research and instrumentation in the bigger semiconductor research

- Laser-based PEEM instrumentation for higher intensity and tunable photon source
 - Addressing issues related to microscope's alignment and stability
 - Use of various optical transitions to access various energy levels of semiconductors
 - Time- & spin-resolution to address the fundamental questions for materials envisioned for quantum computing
- In-operando microscopy to track device operation, chemical reaction, etc.

Sandia

"Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000."